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A1. Kodaira embedding

I Embedding problem/theorem is universal. It unites the
extrinsic and intrinsic geometry.

I Whitney (1936): any smooth real n-dimensional manifold
(Hausdorff and second-countable) can be smoothly embedded
in the real R2n, n ≥ 1 (weak version in R2n+1).

I Nash(1956): any C∞ Riemannian manifold (Mn, g) can be
isometrically embedded into some Euclidean space Rd with
d = d(n). Nash (1951): algebraic embedding of real
manifolds

I Remmert(1956)-Narasimhan(1960)-Bishop(1961): every Stein
manifold Mm can be holomorphically embedded into C2m+1.

I A Kähler manifold (M, g) is a complex one whose Kähler form

ωg =
√
−1
2 gαβ̄dz

α ∧ dz̄β is d-closed.
I Kodaira (1954): Assuming the Kähler form is integral, a

compact Kähler manifold can be holomorphically embedded
into the complex projective Pm (called projective).
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A2. Implications

I Any projective manifold is Kähler (complex submanifolds of
Kähler are Kähler). Not all Kähler manifolds are projective.

I ‘Forgetting’ is helpful: Serre’s duality for algebraic manifolds
can be proved by Hodge-Kodaira theorem on complex vector
bundles of any complex manifolds.

I W.-L. Chow’s theorem (any complex submanifolds of Pm must
be algebraic, namely zeros of polynomials) and Serre’s GAGA
principle.

I Hence ‘projectivity’=‘being algebraic’; and the embedding
avails us the algebraic tools to study some Kähler manifolds.

I ’Forgetting’ allows PDEs/geometric method to study the
algebraic manifolds, e.g. yielding the Hodge
theorem/structure, Rieman-Roch-Hirzebruch index theorem
etc.
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A3. The positivity of line bundles

I An equivalent formulation of the condition for Kodaira’s
embedding theorem is that M admits a positive holomorphic
line bundle (by also Kodaira).

I The positivity of L = there exists a hermitian metric a on L

such that its Chern curvature c1(L) = −
√
−1

2π ∂∂̄ log a > 0.

I Kodaira’s embedding theorem is built upon his vanishing
theorem, which is very influential to L2-estimate of ∂̄-operator.

I Given a Kähler manifold (M, g), when it admits a positive line
bundle?

I The ‘canonical choice’ is the canonical line bundle
(KM , det(g)−1) or anti-canonical line K−1

M = detT ′M bundle.
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B1. Intrinsic positivities

I For KM , the positivity amounts to Ric < 0; for K−1
M the

positivity amounts to Ric > 0 (called Fano).

I Are there other intrinsic curvatures for Kähler manifolds imply
projectivity?

I Sectional curvature and bisectional curvature
(B = R(X , X̄ ,Y , Ȳ )) positivity imply Ric > 0.

I They are very strong conditions for Kähler manifolds.

I Mori, Siu-Yau: If a Kähler manifold (M, g) has B > 0, then
M = Pm (biholomorphically).

I Mok: If a Kähler manifold (M, g) satisfies B ≥ 0, b2 = 1,
then M is a compact HSS.
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B2. Other intrinsic curvatures

I Holomorphic sectional curvature H(X ) = R(X ,X ,X ,X ) has
been known to be independent of Ricci curvature (by
examples Hitchin and others).

I Does H > 0 (or H < 0) imply the projectivity (namely M can
be embedded into Pk)?

I Yes. For H > 0 it is a theorem of X. Yang (Cambridge J.
Math. 2018). For H < 0 it is the combined effort of Wu-Yau
(Invent. Math. 2016) and Tossati-Yang (JDG, 2017).

I The first result does not apply to Riemann surfaces of positive
genus. The second result is also restrictive in high dimension
as explained later.

I More importantly there are many tori of complex dimension 2
which is not projective.

I Our first result/curvature captures, to some degree, the
essential connection between the intrinsic positivity and the
projectivity.
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B3. The k-scalar curvature

I For x ∈ M and Σ ⊂ T ′xM a k-dimensional subspace, define

Sk(x ,Σk) +
k(k + 1)

2Vol(S2k−1)

∫
|Z |=1,Z∈Σ

H(Z ) dθ(Z ).

I Recall that the scalar curvature
S(x) =

∑m
i ,j=1 R(Ei ,E i ,Ej ,E j), where {Ei} is a unitary basis

of T ′xM. Berger proved that

S(x) =
m(m + 1)

2Vol(S2m−1)

∫
|Z |=1,Z∈T ′

xM
H(Z ) dθ(Z ),

which implies S > 0 if H > 0.

I We say Sk(x) ≥ λ (≤ λ) if Sk(x ,Σ) ≥ λ (Sk(x ,Σ) ≤ λ) for
all k-dimensional subspace Σ ⊂ T ′xM.
Clearly for k = 1, S1(x) ≥ λ is the same as H(X ) ≥ λ|X |4,
and Sm(x) = S(x).
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C.1 A Kodaira embedding theorem

I Theorem (N-Zheng, 2018)

Any compact Kähler manifold Mm with positive 2nd-scalar
curvature must be projective. In fact hp,0(M) = 0 for any
2 ≤ p ≤ m.

I It was a theorem of Kodaira asserting that h2,0 = 0 is
sufficient for the projective embedding.

I This provides a general criterion on the projectivity. It is sharp
since generic 2-tori are non-Abelian (not projective). The
vanishing result also holds for H0(M,Ω⊗p). The vanishing
theorem for hp,0 with p ≥ k holds under Sk > 0 for k ≥ 3.
But no embedding theorem could be possible.

I By Kodaira-Spencer, there exists smooth deformations of
Kähler metrics among a family of holomorphic deformations.
Hence the result also implies the stability of the projectivity
for such manifolds.
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C2. The proof

I First ingredient: a ∂∂̄-lemma.

∂∂|s|2 = 〈∇s,∇s〉 − R̃(s, s, ·, ·)

where R̃ stands for the curvature of the Hermitian bundle∧p Ω, and Ω = (T ′M)∗ is the holomorphic cotangent bundle
of M. The metric on

∧p Ω is derived from the metric of Mm.

I Second ingredient: 2nd variation consideration (on the
minimal 2-subspaces, or k-spaces) is the key (this is motivated
by Wiliking’s proof of invariant conditions for Ricci flow). To
prove the theorem we apply the maximum principle at x0,
where |s|2 attains its maximum (s being a holomorphic
(2, 0)-form).

I In view of the compactness of the Grassmannians we find a
complex two plane Σ in T ′x0

M such that
S2(x0,Σ) = infΣ′ S2(x0,Σ

′) > 0.
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C3. Estimates needed

I In the following we denote
∫
f (Z ) to be the average of the

integral of the function f over S3 ⊂ Σ.

I For any E ∈ Σ and E ′ ⊥ Σ with |E | = |E ′| = 1, we have that∫
R(E ,E

′
,Z ,Z )dθ(Z ) =

∫
R(E ′,E ,Z , Z̄ )dθ(Z ) = 0,∫

R(E ,E ,Z ,Z ) + R(E ′,E
′
,Z ,Z ) dθ(Z ) ≥ 1

6
S2(x0,Σ),∫

R(E ′,E
′
,Z ,Z ) dθ(Z ) ≥ 1

6
S2(x0,Σ).

I The novelty of our proof is to use the minimality of Σ to get
useful estimates first, and then apply them to tracing
∂∂̄-Lemma over Σ (only). B. Andrews (then adapted by
Brendle and others) applied a similar trick to the diagonal
manifolds (e.g. half of the dimension of the product manifold).
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C4. Another family of intrinsic conditions

I Define Ric(x ,Σ) as the Ricci curvature of the curvature
tensor restricted to the k-dimensional subspace Σ ⊂ T ′xM.
Namely Ric(x ,Σ)(v , v̄) =

∑k
i=1 R(Ei ,E i , v , v̄) with {Ei}

being a unitary basis of Σ. We say that Rick(x) > 0 if
Ric(x ,Σ) > 0 for every k-dimensional subspace Σ.

I Clearly when k = 1, Rick is just the holomorphic sectional
curvature. And if k = m Rick is just the Ricci curvature.

I Theorem (Ni, 2019)

Let (Nn, h) be a compact Kähler manifold with Rick > 0, for some
1 ≤ k ≤ n. Then N is projective and rationally connected. In
particular, π1(N) = {0}.

I The rational connectivity was due to Heier-Wong (2015)for
k = 1. For k = m, the rational connectivity was proved by
Campana, Kollár-Miyaoka-Mori (90s), independently.

I The proof uses 1) the above estimates and considerations, 2)
Applying maximum principle to the co-mass of the forms.
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D1. Kobayashi hyperbolicity and the Schwarz Lemma of
Yau-Royden

I Kobayashi hyperbolicity (Brody): Compact Nn is 1-hyperbolic
if and only if any holomorphic map f : C→ N must be
constant.

I Schwarz Lemma (Yau-Royden): Let f : Σ→ Nn be a
holomorphic map. Assume that the holomorphic sectional
curvature of N, H(Y ) ≤ −κ|Y |4 and the curvature of
Riemann surface Σ, Ric(X ,X ) ≥ −K |X |2 with κ,K > 0.
Then

‖∂f ‖2 ≤ K

κ
.

I It generalizes the Ahlfors’s result and implies the
1-hyperbolicity of N, if N is compact and HN(Y ) < 0. Hence
H < 0 is a very restrictive condition. Conditions Sk < 0, and
Rick < 0 for k ≥ 2 are more flexible.
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E2. Notation and proof

I For the tangent map ∂f : T ′xM → T ′f (x)N we define its
maximum norm square to be

‖∂f ‖2
m + sup

v 6=0

|∂f (v)|2

|v |2
.

I It is a reminiscent of the well-known Pogorelov’s Lemma for
Monge-Ampère equation, since the maximum eigenvalue of
∇2u is the ‖ · ‖m for the differential of normal map ∇u for
any smooth u.

I It is perhaps the most natural high dimensional generalization
of Ahlfors’ (and Yau-Royden) Schwarz lemma for mapping
between Riemann surfaces.

I The proof uses a viscosity consideration from PDE theory.
The key is to construct a smooth barrier.
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E3. A geometric implication

I A classical result asserts: A simply-connected Kähler manifold
Mm with negative holomorphic sectional curvature −1 must
be isometric to the complex hyperbolic space form CHm.

I Naturally one could ask if the holomorphic sectional curvature
is close to −1, can one prove that the metric is close to the
complex hyperbolic one? Namely the ‘stability’ of H? (Rauch
showed the topological stability for the sectional curvature,
which led to quarter-pinching theorems).

I Corollary: the equivalence of the negativities of the
holomorphic sectional curvature implies the equivalence of the
metrics.

I If two Kähler metrics g1 and g2 satisfy that

−L1|X |4g1
≤ Hg1(X ) ≤ −U1|X |4g1

, −L2|X |4g2
≤ Hg2(X ) ≤ −U2|X |4g2

then for any v ∈ T ′xM we have the estimates:

|v |2g2
≤ L1

U2
|v |2g1

; |v |2g1
≤ L2

U1
|v |2g2
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F1. A question on k-hyperbolicity

I k-hyperbolicity: N is k-hyperbolic if and only if any
holomorphic f : Ck → N must be degenerate (namely
dim(f (M)) < k).

I Conjecture: Let Nn (n ≥ 2) be a compact Kähler manifold
with Sk < 0. Then Nn is k-hyperbolic.

I Theorem (N-2018)

(i) Assume that dimCM = m ≤ n = dimCN. Let (M, g) be a
compact Kähler manifold such that RicM ≥ 0. Let (Nn, h) be a
complete Kähler manifold such that SN

m (y) < 0. Then any
holomorphic map f : M → N must be degenerate. If the condition
is relaxed to allow SN

m ≤ 0 then either the map is degenerate or it
must be totally geodesic.
(ii) If RicNk < 0 and N is compact, then N is k-hyperbolic. Same
rigidity as (i) holds if < is ≤.

I For (ii) the equal dimensional case was known (Mok-Yau).
Here RicNk < 0 is a stronger assumption than Sk < 0.
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F2. Related questions for Kähler manifolds with Sk < 0
and Rick ≤ 0 (Rick ≥ 0)

I What can be said for π1(M) if Rick ≥ 0? When k = n,
Cheeger-Gromoll applies. It can not contain a surface group
for g(Σ) ≥ 2 (Ni-2019).

I Wu-Yau, Tosatti-Yang: A compact Kähler manifold with
H < 0 (or even quasi-negative) is projective and KM is ample.

I Questions: how about compact Kähler manifolds with S2 < 0?
Are they projective? When can one deduce that KM is ample?

I Similar question can be asked for Rick < 0 for k ∈ (1, n),
which is stronger than Sk < 0.

I (Motivated by my metric stability result) Is a compact Kähler
manifold with H close to −1 biholomorphic to a quotient of
complex hyperbolic space? (Negative for Riemannian case by
Gromov-Thurston. But true for the positive case due to Mori,
Siu-Yau’s result and the curvature pinching).



F2. Related questions for Kähler manifolds with Sk < 0
and Rick ≤ 0 (Rick ≥ 0)

I What can be said for π1(M) if Rick ≥ 0? When k = n,
Cheeger-Gromoll applies. It can not contain a surface group
for g(Σ) ≥ 2 (Ni-2019).

I Wu-Yau, Tosatti-Yang: A compact Kähler manifold with
H < 0 (or even quasi-negative) is projective and KM is ample.

I Questions: how about compact Kähler manifolds with S2 < 0?
Are they projective? When can one deduce that KM is ample?

I Similar question can be asked for Rick < 0 for k ∈ (1, n),
which is stronger than Sk < 0.

I (Motivated by my metric stability result) Is a compact Kähler
manifold with H close to −1 biholomorphic to a quotient of
complex hyperbolic space? (Negative for Riemannian case by
Gromov-Thurston. But true for the positive case due to Mori,
Siu-Yau’s result and the curvature pinching).



F2. Related questions for Kähler manifolds with Sk < 0
and Rick ≤ 0 (Rick ≥ 0)

I What can be said for π1(M) if Rick ≥ 0? When k = n,
Cheeger-Gromoll applies. It can not contain a surface group
for g(Σ) ≥ 2 (Ni-2019).

I Wu-Yau, Tosatti-Yang: A compact Kähler manifold with
H < 0 (or even quasi-negative) is projective and KM is ample.

I Questions: how about compact Kähler manifolds with S2 < 0?
Are they projective? When can one deduce that KM is ample?

I Similar question can be asked for Rick < 0 for k ∈ (1, n),
which is stronger than Sk < 0.

I (Motivated by my metric stability result) Is a compact Kähler
manifold with H close to −1 biholomorphic to a quotient of
complex hyperbolic space? (Negative for Riemannian case by
Gromov-Thurston. But true for the positive case due to Mori,
Siu-Yau’s result and the curvature pinching).



F2. Related questions for Kähler manifolds with Sk < 0
and Rick ≤ 0 (Rick ≥ 0)

I What can be said for π1(M) if Rick ≥ 0? When k = n,
Cheeger-Gromoll applies. It can not contain a surface group
for g(Σ) ≥ 2 (Ni-2019).

I Wu-Yau, Tosatti-Yang: A compact Kähler manifold with
H < 0 (or even quasi-negative) is projective and KM is ample.

I Questions: how about compact Kähler manifolds with S2 < 0?
Are they projective? When can one deduce that KM is ample?

I Similar question can be asked for Rick < 0 for k ∈ (1, n),
which is stronger than Sk < 0.

I (Motivated by my metric stability result) Is a compact Kähler
manifold with H close to −1 biholomorphic to a quotient of
complex hyperbolic space? (Negative for Riemannian case by
Gromov-Thurston. But true for the positive case due to Mori,
Siu-Yau’s result and the curvature pinching).



F2. Related questions for Kähler manifolds with Sk < 0
and Rick ≤ 0 (Rick ≥ 0)

I What can be said for π1(M) if Rick ≥ 0? When k = n,
Cheeger-Gromoll applies. It can not contain a surface group
for g(Σ) ≥ 2 (Ni-2019).

I Wu-Yau, Tosatti-Yang: A compact Kähler manifold with
H < 0 (or even quasi-negative) is projective and KM is ample.

I Questions: how about compact Kähler manifolds with S2 < 0?
Are they projective? When can one deduce that KM is ample?

I Similar question can be asked for Rick < 0 for k ∈ (1, n),
which is stronger than Sk < 0.

I (Motivated by my metric stability result) Is a compact Kähler
manifold with H close to −1 biholomorphic to a quotient of
complex hyperbolic space? (Negative for Riemannian case by
Gromov-Thurston. But true for the positive case due to Mori,
Siu-Yau’s result and the curvature pinching).



F2. Related questions for Kähler manifolds with Sk < 0
and Rick ≤ 0 (Rick ≥ 0)

I What can be said for π1(M) if Rick ≥ 0? When k = n,
Cheeger-Gromoll applies. It can not contain a surface group
for g(Σ) ≥ 2 (Ni-2019).

I Wu-Yau, Tosatti-Yang: A compact Kähler manifold with
H < 0 (or even quasi-negative) is projective and KM is ample.

I Questions: how about compact Kähler manifolds with S2 < 0?
Are they projective? When can one deduce that KM is ample?

I Similar question can be asked for Rick < 0 for k ∈ (1, n),
which is stronger than Sk < 0.

I (Motivated by my metric stability result) Is a compact Kähler
manifold with H close to −1 biholomorphic to a quotient of
complex hyperbolic space? (Negative for Riemannian case by
Gromov-Thurston. But true for the positive case due to Mori,
Siu-Yau’s result and the curvature pinching).



F3. Curvature characterization of homogenous Kähler
manifolds

I HSSs are characterized by B ≥ 0 by Mori, Siu-Yau, Mok of
compact HSSs. HSSs are special homogenous Kähler spaces
(C -spaces).

I Conjecture (Campana-Peternell, Zheng, 1993) For M Fano,
nef of T ′M → M is rational homogenous Kähler;
Wu-Yau-Zheng (2009) attempted with a curvature notion QB
(not working due to Chau-Tam, 2012).

I Quadratic orthogonal bisectional curvature (QB) is defined as
〈R,A2∧̄id − A∧̄A〉 for any Hermitian symmetric tensor A.
Locally QB> 0 =

∑
i ,j Ri ī j j̄(ai − aj)

2 > 0, for any unitary

frame {ei}, ~a 6= c~1.
I A step back: Ric⊥(X , X̄ ) + Ric(X , X̄ )− H(X )/|X |2.

(QB) > 0 implies Ric⊥ > 0. Wang-Zheng-N: Classical
C -spaces with b2 = 1 satisfy Ric⊥ > 0 (unlike QB > 0); A
Frankel type result holds; A complete classification for
dimC(M) = 3.
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F3. Cross quadratic curvature

I For n = 4, Wang-Zheng-N formulated a conjecture for
Ric⊥ > 0 Kähler manifolds.

I n ≥ 5, Ric⊥ > 0 perhaps is too weak to prove that it must be
a C -space. It remains open even if such a manifold is Fano.

I A step further (motivated by Calabi-Vesentini’s work): On a
Kähler manifold (Mn, g), let T ′M and T ′′M be the
holomorphic and anti-holomorphic tangent bundle of M, then
CQB is a Hermitian quadratic form on linear maps
A : T ′′M → T ′M:

CQB(A) =
n∑

α,β=1

R(A(Eα),A(Eα),Eβ,Eβ)−R(Eα,Eβ,A(Eα),A(Eβ))

where R is the curvature tensor of M and {Eα} is a unitary
frame of T ′M. dCQB can be defined as well.

I CQB1 > 0 implies Ric > 0 and Ric⊥ > 0. The local rigidity of
manifolds with dCQB> 0, and that all classical C -spaces with
b2 = 1 satisfies CQB> 0, dCQB> 0 (Ni-2019).
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F4. Two conjectures and partial progresses

I Kähler C -spaces with CQB≥ 0, dCQB> 0 and b2 →∞ exist.

I Conjecture

Any Kähler C-space will have nonnegative CQB and positive dCQB.

I Conjecture

Let (M, g) be a Kähler-Einstein manifold with CQB ≥ 0 and (or)
dCQB > 0. Then M is biholomorphic to a Kähler C-space.

I The conjecture without the KE condition also makes sense.

I Theorem (N-Zheng, 2019)

Let (M, g) be a compact Kähler manifold with CQB1 ≥ 0 (or
dCQB1 ≥ 0) and its universal cover does not contain a flat de
Rham factor. Then M is Fano. In fact, the Kähler-Ricci flow will
evolve the metric g to ones with positive Ricci curvature.

There are Riemannian analogues of CQB and dCQB. The
result for real cases generalizes an earlier result of
Böhm-Wilking on manifolds with K ≥ 0.
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